TROPICAL LEPIDOPTERA, 3(2): 123-129

A NEW AUTOMERIS FROM ARIZONA, INCLUDING ITS LIFE HISTORY AND NOTES ON THE AUTOMERIS COLENON COMPLEX (LEPIDOPTERA: SATURNIIDAE: HEMILEUCINAE)

CLAUDE LEMAIRE¹, MICHAEL J. SMITH², and KIRBY L. WOLFE³

La Croix des Baux, F-84220, Gordes, France;¹
7428 Holworthy Way, Sacramento, CA, 95842, USA;²
3090 Cordrey Drive, Escondido, CA, 92029, USA³

ABSTRACT.—Automeris patagoniensis new sp. is described from the Patagonia Mountains, Santa Cruz County, Arizona (elev. 1350-1550m), USA. The new species belongs to the Automeris io (Fabricius) group, and is most closely allied with Automeris colenon Dyar (= thyreon Dyar, new syn.), a widely distributed grass-feeding Mexican species. Male and female genitalia are figured, species variation, distribution and natural history are compared and the respective larval and imaginal characters of A. patagoniensis, A. colenon, and A. io draudtiana are discussed and illustrated.

KEY WORDS: Anacardiaceae, Automeris patagoniensis new sp., biology, Costa Rica, distribution, Fabaceae, Fagaceae, genitalia, Gramineae, Hemileuca, immature stages, larvae, Leguminosae, Mexico, natural history, Poaceae, Rosaceae, Salicaceae, Sonora, systematics, variation.

Saturniidae are among the largest, most colorful, and best known of moths and it would therefore seem that little about this notable family still remained to be discovered in the United States, where collecting has been so intensive for many years. It is somewhat of a surprise that a relatively large number of species of this family has been recorded as new for the country over the past twenty years, e.g. Automeris randa Druce, Automeris iris (Walker), Hemileuca griffini Tuskes. The new species described herein, is the ninth additional saturniid species reported from North America since Ferguson’s (1971-72) publication of the Saturniidae of America, North of Mexico. The new species is also the seventh known species of its genus recorded for the country. Additional research resulted in an earlier collected specimen from July 1972, leg. R. F. Sternitzky, from the "Huachuca Mts."

Additional research resulted in an earlier collected specimen from July 1972, leg. R. F. Sternitzky, from the "Huachuca Mts."

Cochise Co., Arizona. This specimen is in the collection of James P. Tuttle, Troy, Michigan.

DIAGNOSIS.—This new species is closest to A. colenon Dyar and can be distinguished by several characters, especially the straight lines on the underside hindwing (see remarks below).

DESCRIPTION.—Forewing length: \(\sigma 24-25\text{mm} \ (n = 5), \varphi 26\text{mm} \ (n = 1) \).

MALE.—(Fig. 9). Head: orange, labial palpi three-segmented, the same color as or slightly darker than the frontal area. Antennae yellow, quadripectinate to the apex; apical rami on the inner side of the flagellum about the same length as the basal rami; the apical rami on the outer side about three-fifths the length of the corresponding basal rami. Thorax: orange. Legs brown, with tibias densely covered with orange hairs; epiphysis present, about fourths as long as the foretibia; hind tibia with a single subapical spur and one pair of apical spurs. Abdomen: dorsally orange-tan, ventrally orange. Forewing: above a monochromatic orange-tan ground color rarely yellowish or yellow-orange (see below, variation); lines as shown in Fig. 9, the antemedial line usually the most faint; discal spot slightly darker than the rest of the wing, composed of one central and five to six peripheral blackish dots. Forewing below the same ground color as dorsally, only slightly duller, with a very faint pinkish area along the inner side of the wing; markings rarely contrasting, composed of an outwardly concave pinkish postmedial line and a small whitish discal spot surrounded with black. Hindwing: above with the typical ornamentation of the genus, the rather small and little contrasting ocellus outwardly followed by a blackish or purplish postmedial line and a broader pinkish submarginal band; basomedial area yellow, turning to pale pink under the costa and to a brighter pink coloration along the inner side of the wing; spaces between the post-
They grew more slowly due to lower average temperatures. One last instar larva was found dead, several disappeared, and a total of 11 pupae were obtained.

Both male and female larvae underwent six instars averaging six days each, with earlier instars of four or five days and the last instar requiring 10 days or more.

Descriptions.

Egg. 1.8mm long and typical of *Automeris*, egg is a white, slightly flattened oval, upright with micropile on top that turns black in fertilized eggs several days after oviposition. Eggs are deposited in small clusters.

First instar. Head: Diameter 0.6mm; straw-colored with sparse gold setae. Body: ground color light green frosted with white. Scoli yellow, spines darker. Length: 6.8mm.

Second instar. Head: 1.3mm; straw-yellow. Body: as in first instar, greener and more obviously broadly striped with an indistinct white wash. Scoli and spines straw-yellow. Length: 11mm.

Third instar. Head: 2.1mm; straw. Body: green; dorsal, subdorsal and lateral white stripes more defined. Scoli yellow. Length: 18mm.

Fourth instar. Head: 2.9mm; straw. Body: integument olive-green. Dorsal stripe broadly dark olive-gray bordered with white. Many thoracic and some dorsal abdominal and caudal spines black. Length: 25mm.

Fifth instar. Head: 4.15mm; greenish horn. Body: medium olive-green with broad white lateral line. One of twelve larvae observed was pink (see sixth instar below). Length: 32-40mm.

Sixth instar. (Fig. 17-18). Head: 6.15mm. Body: mature length: 56-62mm. Width: 11mm. Larvae about equally divided between two distinct color morphs, brownish-pink or green.

Green morph: green grass, above washed with powder blue; dotted mostly on prolegs and along subspiracular line with tiny yellow pinacula, each supporting a single tiny seta. Spiracles orange bordered narrowly with black. Spines mostly lemon-yellow, some on prothoracic segment black-tipped. Lateral line broad, white, bordered narrowly above with sepia and more narrowly below between prolegs with brown. Head greenish-horn.

Pink morph: Brownish-pink integument, above washed with powder-blue. White subspiracular line bordered with sepia, yellow pinacula, and orange spiracles as in green morph. Spines mostly orange, some black-tipped. Head dusky-pink.

Pupa and cocoon. Pupa measures 21-23mm x 10-11mm, and is dark brown. Pupation is within a cocoon fortified with encrusted soil and debris (Fig. 23), spun on the ground among dense grass.

Comparison of immature stages. To our knowledge, the larva of *A. colenon*, closest ally of *A. patagoniensis*, has not been described. The following discussion highlights similarities and differences between these two species (see Table 2).

Larvae of *A. patagoniensis* and *A. colenon* are similar in size and shape, spination and habits. Early instar larvae of the former species are white or light green, and those of the latter species are dark reddish or black (Fig. 20-21). In the later instars (Fig. 17-19), both have orange spiracles bordered with black; tiny yellow pinacula; and a white subspiracular band. Both fed on grasses. The most distinguishing differences are the width of the white subspiracular band (half as wide in *A. colenon*); the density of the yellow pinacula (two to three times as many per cm2 in *A. colenon*); and the overall color of the integument in most instars.
Fig. 25. Male genitalia of *Automeris patagoniensis*. (scale = 1mm)

(black or dark reddish-brown in *A. colenon*, bluish-green or brownish-pink in *A. patagoniensis*). Toward the end of the last instar, larvae of both species become quite similar, as *A. patagoniensis* becomes browner and *A. colenon* becomes greener.

Jim Brock of Tucson, Arizona, found a mature larva of *A. patagoniensis* resting on a shrub in association with side-oats grama grass (*Bouteloua curtipendula* (Michx.) Poaceae) in early October 1991 (J. Brock, pers. comm.). This larva immediately fed to pupation on the grama grass from that locality. The larva matched the final instar description for the green morph of *A. patagoniensis*.

HOSTS.—Unverified in nature, but various grasses of the Poaceae family are suspected.

Disposition of types: the holotype ♂ and the allotype ♀ are deposited in the collection of the Natural History Museum of Los Angeles County, Los Angeles, California. A paratype ♂ is deposited in the Muséum National d’Histoire Naturelle, Paris, France. Additional paratype males are deposited in the collections of the original collectors.

ETYMOLOGY.—This species is named for its type locality, the Patagonia Mountains, located in southern Arizona in Santa Cruz County, east of Nogales. Its known range is still inexplicably restricted only to this mountain system.

HOSTS. Unverified in nature, but various grasses of the Poaceae family are suspected.

Table 1. Comparison of adult character differences.

<table>
<thead>
<tr>
<th>Character</th>
<th>A. patagoniensis</th>
<th>A. colenon</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male dimorphism</td>
<td>Very little. A single yellow and one intermediate example among 31 specimens examined.</td>
<td>Yellow and beige morph ratio probably near 1:1 (possibly geographically variable). Slight variability with yellow tan, orange-brown specimens.</td>
</tr>
<tr>
<td>Dorsal surface coloration and markings</td>
<td>Markings usually faint; ocellus somewhat nebulous; light areas of hindwing dull yellow.</td>
<td>Markings always well developed, contrasting; ocellus prominent; light areas of hindwing bright yellow.</td>
</tr>
<tr>
<td>Ventral surface coloration</td>
<td>Ground color dull orange tan on all wings, no trace of yellow.</td>
<td>Ground color yellow or orange-yellow in beige and yellow morphs; brownish in darker morphs, most specimens have pink area around forewing.</td>
</tr>
<tr>
<td>Ventral surface markings</td>
<td>Forewing discal spot small, faint; postmedial lines faint, hindwing line straight or slightly outwardly convex.</td>
<td>Forewing discal spot contrasting, larger on average; postmedial lines prominent, hindwing line clearly convex.</td>
</tr>
</tbody>
</table>

Table 2. Comparison of larval characteristics.

<table>
<thead>
<tr>
<th>Instar</th>
<th>A. patagoniensis</th>
<th>A. colenon</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>yellow to green washed with white; scoli and spines yellow; head greenish yellow</td>
<td>dark reddish-brown; scoli same; head darker</td>
</tr>
<tr>
<td>2</td>
<td>dark green; subdorsal, supra- and subspiracular lines white; scoli and most spines yellow, some spines, especially prothoracic, black; head straw</td>
<td>reddish-brown, scoli same; spines mostly dusky orange, some black; head dark brown</td>
</tr>
<tr>
<td>3</td>
<td>same as 2nd instar; dorsal band broad, dark olive; white lines more distinct</td>
<td>integument near black; some spines dirty yellow, others black</td>
</tr>
<tr>
<td>4</td>
<td>green, similar to 3rd instar; subspiracular white band broader; few tiny yellow pinacula ventrally</td>
<td>brownish black; spines as in 3rd instar, integument covered with spiny yellow pinacula</td>
</tr>
<tr>
<td>5</td>
<td>Green morph (most larvae): grass-green below, light blue-green above; no dorsal bands; no subdorsal or supra spiracular white stripes; yellow pinacula present; subspiracular stripe wide, white, distinctly bordered above with sepia; spiracles orange-bordered with black; spines yellow, few black; head yellow-green</td>
<td>dark purplish-brown; subspiracular line first appears narrow, white, on obvious border; integument densely covered with yellow pinacula; spines orange-brown and black; head dark brown</td>
</tr>
<tr>
<td>6</td>
<td>Pink morph: liver or brown-pink washed dorsally with chalky blue; pattern otherwise as green morph; spines and head horn-like color</td>
<td>Pink morph: as in 5th instar, but browner and duller; many become greenish-brown toward end of last instar</td>
</tr>
</tbody>
</table>

HABITAT.—Automeris patagoniensis occurs in the oak woodland habitat categorized as the Madrean Evergreen Woodland by Brown (1982). This habitat is a mixed woodland of oak (Quercus) species with several leguminous trees and shrubs (e.g., mesquite (Prosopis), prairie acacia (Acacia angustissima (Mill.)), other shrub species and a variety of grasses. In August 1990, the type locality was visited after a summer of heavy "monsoon" rains and the floral growth was lush. The available potential larval foodplants (see immature stages) included at least ten species of grass (M. J. Smith, pers. obs.). Other Hemileucinae species found in this region include Hemileuca hualapai (Neumöagen), Hemileuca diana (Packard), Hemileuca tricolor Packard, Hemileuca junon Packard, A. i. hesselorum, and Automeris ecdrops pamina (Neumogen). Automeris patagoniensis is sympatric and synchronous with A. c. pamina and A. i. hesselorum.

DISTRIBUTION.—This new species is only known from the vicinity of the type locality, about an 8 km section of the valley along Harshaw Creek, from 1350m to 1550m, in the Patagonia Mountains of southeastern Arizona. The R. F. Sternitzky specimen in the Tuttle collection is labelled "Huachuca Mts., July 1972". The Huachuca Mts. are located in Cochise Co., Arizona, about 32km east of the type locality. This label may be erroneous based on other questionable lepidoptera localities on Sternitzky specimens (J. Brock, pers. comm.). The Huachuca Mts., while containing the appropriate habitat, have been intensively collected over the past two decades, particularly by Noel McFarland in Ash Canyon. Automeris patagoniensis has not been recorded by any other collector in the Huachuca Mts. The species should eventually be found in similar habitat in other canyons of the Patagonia Mountains, a relatively poorly collected area for moths. However, extensive collecting in the mountains surrounding this range indicate that it may be restricted in its distribution. Mountain ranges to the south in adjoining Sonora, Mexico, have not been explored and this new species may yet be found there. Further south, collecting efforts in central and southern Sonora have not yet turned up this species and it appears to be replaced by A. colenon (M. J. Smith, unpub. notes).

FLIGHT PERIOD.—Mid-July to early August.

VARIATION (Figs. 1-3).—Relatively little variation; of the 34 wild-collected male specimens observed, only one (Fig. 3) has a yellowish ground color and another (Fig. 2) has yellow-orange, instead of the more frequent orange-tan. There are also minor variations in the clarity of the markings, primarily dependent on the condition of the specimen.

REMARKS.—Automeris patagoniensis belongs to the A. io group as defined by Lemaire (1973). This group consists of about 10 species, which range in distribution from southeastern Canada and northeastern United States (Ferguson, 1972) to Costa Rica (Jansen, 1982; 1986). Although the new species is more closely related to A. colenon (= thyreon Dyar, new synonymy) than to any other species of the group, both species resemble the male of A. i. drauditana (Fig. 11, 16) of western Mexico. The female of A. i. drauditana is easily distinguished (Fig. 12).

Automeris colenon is widely distributed throughout Mexico, occurring in Sonora, Sinaloa, Jalisco, Michoacán, Guerrero, Morelos, Distrito Federal, México (state), and Chiapas (Hoffmann, 1942; C. Lemaire and M. Smith, unpub. data). Males of this species are dimorphic; a yellow morph (A. colenon) and a
rosy-beige or orange-tan morph (*A. thyreon*) both of which can be obtained from rearing a brood from a single female (K. Wolfe
& M. J. Smith, pers. obsv.). *Automeris colenon* was cited by
Draudt (1929), Schüssler (1934), and Bouvier (1936), as a form
of *Automeris melmon* Dyar. *Automeris thryereon* was cited by
Draudt (1929), Bouvier (1936), and Hoffmann (1942), as a
synonym of *Automeris hebe* (Walker), and by Schüssler (1934)
as a form of *A. hebe*; probably as a result of the misidentification
of the latter species (the male figured by Draudt (1929) as *A. hebe*
is actually the morph *thryereon* of *A. colenon*).

Automeris thryereon is hereby cited as a junior subjective
synonym of *A. colenon*: both names were published on the same
date (March 6, 1912) and in the same work (Dyar, 1912:47, 48).
The precedence of *A. colenon* over *A. thryereon* is determined here
by application of the principle of the first reviser (Art. 24,
Lindberg, Robert Weich, John Palting, Richard Sobonya, Douglas
Patagonia Mts.: Tom Krai, Jeffrey Slotten, Keith Koppos, Markus
Lindberg, Robert Weich, John Palting, Richard Sobonya, Douglas
Mullins, William Kelly, Lee Guidry, Jim Brock, Steve Stone,
Andy Warren, Jim Tuttle, Paul Tuskes, and Mike Collins. Jim
Tuttle provided information on and loaned the specimen of the
Sternitzky record from the "Huachuca Mountains". Markus
Lindberg supplied eggs of the new species and Douglas Mullins
provided eggs of *A. colenon* from Sonora, Mexico. We thank Dr.
Richard Peigler, Denver Museum of Natural History, Denver,
Colorado; Dr. Paul Tuskes, San Diego, California; and Steve
Stone, Aurora, Colorado, for commenting on the manuscript.

LITERATURE CITED

Bouvier, E.-L.
1936. Étude des Saturnioïdes normaux. Famille des Hémileucidés,
(10)19: 267-529.

Brown, D. E. (ed.)
1982. Biotic communities of the American Southwest - United

Draudt, M.
1929-30. 12. Familie: Saturniidae [sic], in A. Seitz (ed.), *Die Gross-

Ferguson, D. C.
1971-72. Bombycoidea (Saturniidae), in R. B. Dominick et al. (ed.), *The
Moths of America North of Mexico, including Greenland*.

Hoffmann, C. C.
1942. Catálogo sistemático y zoogeográfico de los lepidópteros
Inst. Biol.* (Mexico City), 13:213-256.

Janzen, D. H.
1981. Guía para la identificación de mariposas nocturnas de la
familia Saturniidae del Parque Nacional Santa Rosa, Guana-

1986. Biogeography of an unexceptional place: who determines the
Saturniid and Sphingid moth fauna of Santa Rosa National
Park, Costa Rica, and what does it mean to conservation

Lemaire, C.
Biogéographie, éthologie, morphologie, taxonomie (Lep.
79:233-422.

Schüssler, H.
Catalogus* (Berlin), 5:325-484.

ACKNOWLEDGEMENTS

We thank Jeffrey Slotten and Tom Kral for bringing the initial
specimen to our attention. We thank the following lepidopterists
for sharing the results of their field work in 1990 and 1991 in the
Patagonia Mts.: Tom Kral, Jeffrey Slotten, Keith Koppos, Markus
Lindberg, Robert Weich, John Palting, Richard Sobonya, Douglas